Атомарные функции $h_a(x)$ и их свойства

Атомарные функции $h_a(x)$ a>1 являются финитными решениями функционально-дифференциального уравнения

$$y'(x) = \frac{a^2}{2} (y(ax+1) - y(ax-1)), \tag{1}$$

где a — любое действительное число большее единицы.

Функции $h_a(x)$ широко используются для синтеза весовых окон в задачах цифровой обработки сигналов. При a=2 функция $h_a(x)$ тождественно равна функции $\operatorname{up}(x)$. Перечислим основные свойства $h_a(x)$.

1.
$$h_a(x) = 0$$
 при $|x| \ge \frac{1}{a-1}$.

2.
$$h_a(x) \equiv \frac{a}{2}$$
 при $|x| \le \frac{a-2}{a(a-1)}$, $a \ge 2$.

3. Преобразование Фурье $h_a(x)$ имеет вид

$$F_a(p) = \prod_{k=1}^{\infty} \operatorname{sinc}(p / a^k), \tag{2}$$

где через $\operatorname{sinc}(p/a^k)$ обозначен $\sin(p/a^k)/(p/a^k)$,

и обращается в нуль в точках $a^k n\pi$, $n \neq 0$. В практических расчетах, если p невелико, достаточно ограничиться небольшим числом членов произведения (2), так как они быстро стремятся с ростом k к единице. С помощью (2) можно записать разложение $h_a(x)$ в ряд Фурье на интервале $|x| \leq (a-1)^{-1}$:

$$h_a(x) = (a-1)\left(\frac{1}{2} + \sum_{k=1}^{\infty} F_a((a-1)\pi k)\cos((a-1)\pi kx)\right).$$

4. Выражение вида (2) является характеристической функцией случайной величины $\xi(a) = \sum_{j=1}^{\infty} a^{-j} \xi_j$, где $\left\{ \xi_j \right\}$ — последовательность независимых равномерно распределенных на отрезке [-1;1] случайных величин. Функция $\mathbf{h}_a(x)$ представляет собой бесконечнократную свертку характеристических функций интервалов $[-a^{-k};a^{-k}]$ и является плотностью случайной величины $\xi(a)$, следовательно, $\int_{-\infty}^{\infty} \mathbf{h}_a(x) dx = 1$. Длины характеристических интервалов подчиняются закону геометрической прогрессии с основанием $a^{-1} < 1$.

5. Моменты $\mathbf{h}_a(x)$ равны значениям производных ее преобразоания Фурье (2) в нуле

$$\int_{-\infty}^{\infty} x^{2k} h_a(x) dx = (-1)^k F_a^{(2k)}(0).$$

Кроме того, $F_a^{(2k)}(0) = (2k)!c_{2k}(a)$, где величины $c_{2k}(a)$ вычисляются по простым рекуррентным формулам

$$c_0(a) = 1$$
, $c_{2k}(a) = \frac{1}{a^{2k} - 1} \sum_{j=0}^{k-1} \frac{(-1)^{k-j} c_{2j}(a)}{(2k-2j+1)!}$, $k = 1, 2, ...$

6. При a>2 функция $\mathbf{h}_a(x)$ представляет собой многочлен на множестве полной меры, а на оставшемся нигде не плотном множестве меры нуль является неаналитической (ряд Тейлора либо состоит из конечного числа членов и к $\mathbf{h}_a(x)$ не сходится, либо имеет нулевой радиус сходимости). Функции $\mathbf{h}_a(x)$ при a>2 могут быть причислены к сплайнам класса C^{∞} .

7. Производные $h_a(x)$ выражаются через сдвиги-сжатия самой функции рекуррентно с помощью соотношения (1),

$$h_a^{(n)}(x) = 2^{-n} a^{\frac{n(n+3)}{2}} \sum_{k=1}^{2^n} \delta_k h_a \left(a^n x + \sum_{j=1}^n a^{j-1} (-1)^{p_j(k-1)} \right),$$

где $\delta_1=1,\ \delta_{2k}=-\delta_k,\ \delta_{2k-1}=\delta_k,\ k=1,2,...,$ а $p_j\left(k\right)$ — число, стоящее в j- м разряде двоичного разложения числа k, то есть $p_j\left(k\right)=\left[k\cdot 2^j\right]$ mod 2.

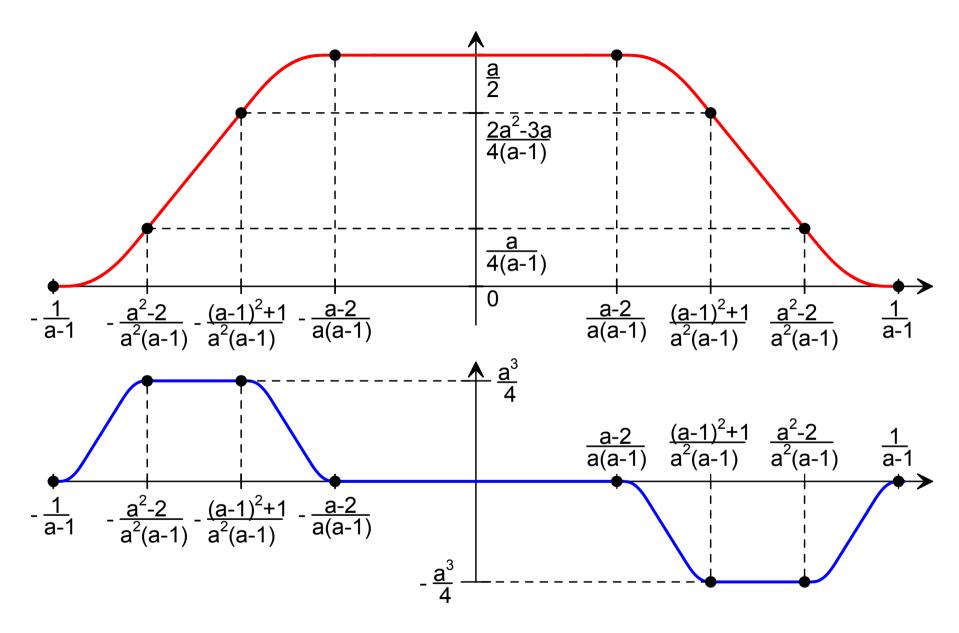


Рис. 1. Структура АФ $h_a(x)$ и ее производной при $a \ge 2$

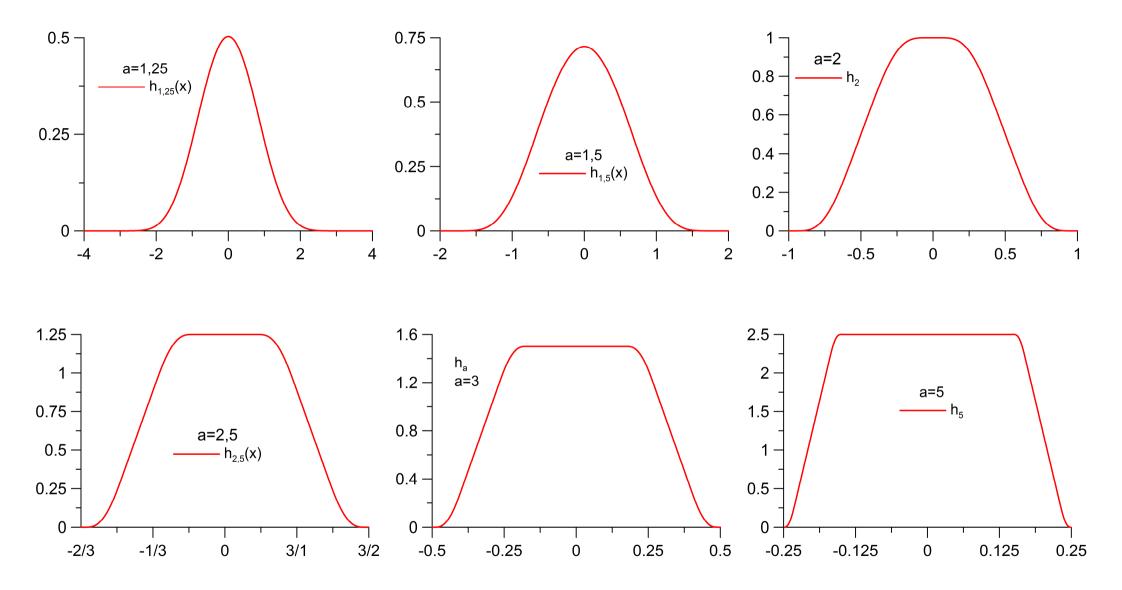


Рис. 2. Графики функций $h_a(x)$, a = 1,25; 1,5; 2; 2,5; 3;5.

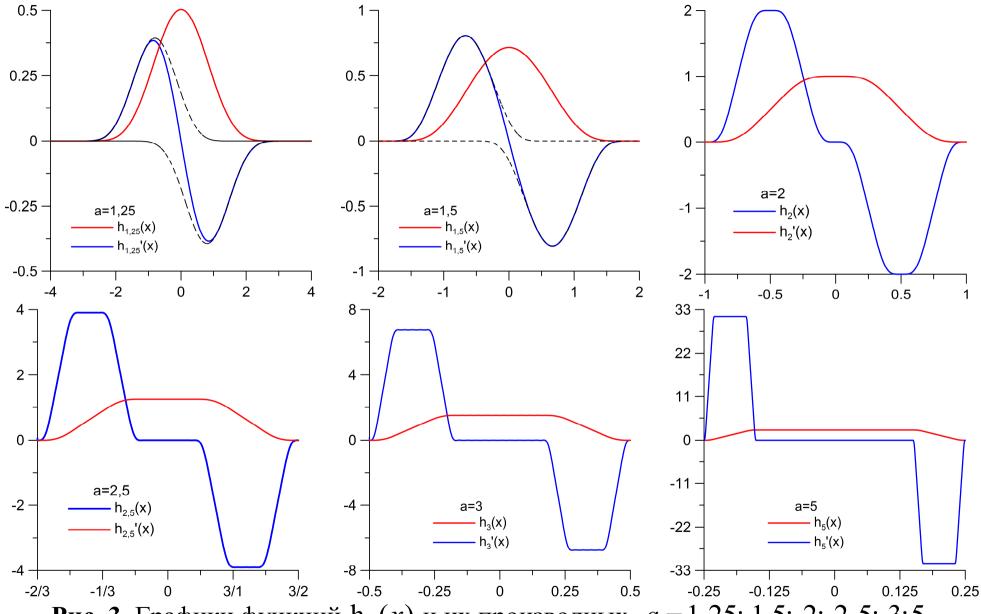


Рис. 3. Графики функций $h_a(x)$ и их производных, a = 1,25; 1,5; 2; 2,5; 3;5.

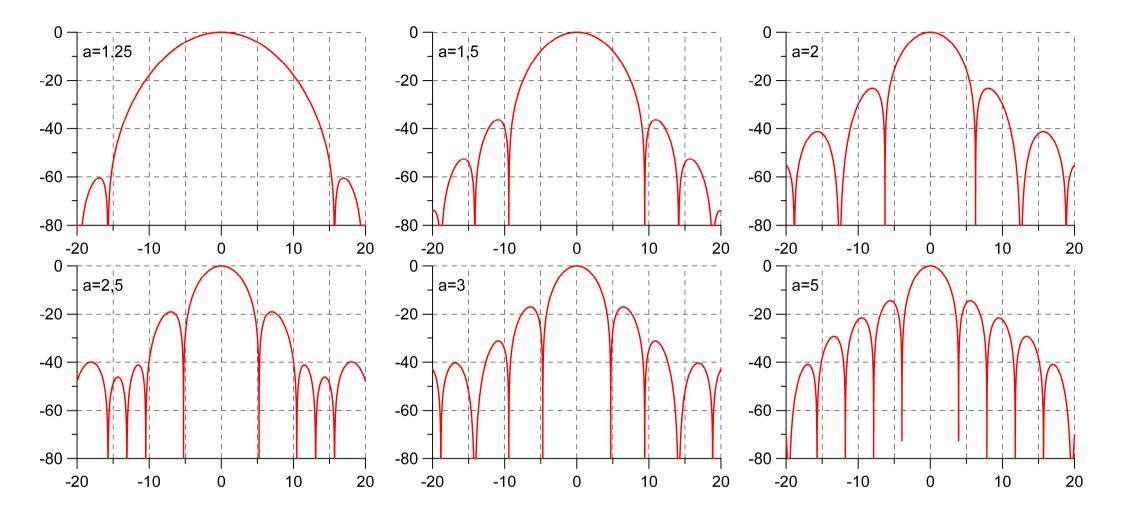
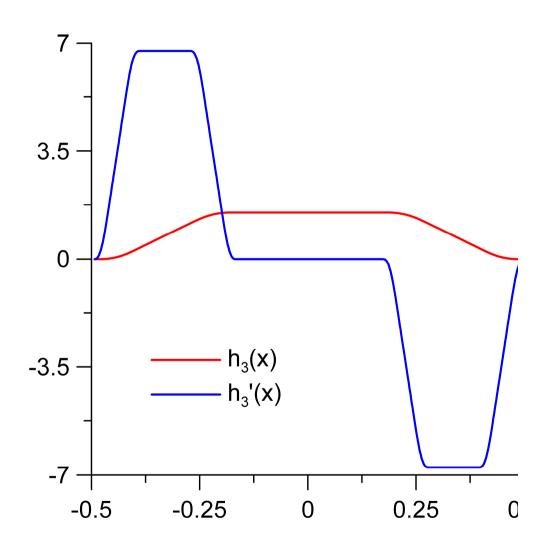


Рис. 4. Амплитудно частотные характеристики АФ $\mathbf{h}_a(x)$, a=1,25; 1,5; 2; 2,5; 3;5 $H=20\lg(F(\tilde{h}))$, где \tilde{h} - $\mathbf{h}_a(x)$ растянутая на носитель [-1,1] и нормированная на единичный интеграл; F – преобразование Фурье.

Атомарные функции $h_a(x)$



$$y' = \frac{a^{2}}{2} (y(ax+1) - y(ax-1))$$

$$\text{supp}(h_{a}) = \left[-\frac{1}{a-1}; \frac{1}{a-1} \right]$$

$$a = 3$$

$$y' = \frac{9}{2} (y(3x+1) - y(3x-1))$$

$$\text{supp}(h_3) = \left[-\frac{1}{2}; \frac{1}{2} \right]$$

Вычисление АФ $h_3(x)$ как неподвижной точки оператора

$$A(y) = \frac{27}{2} \int_{-\frac{1}{2}}^{x} \left(y(3\eta + 1) - y(3\eta - 1) \right) d\eta$$

1																										
1	0	-1																								
1	1	0																								
1	1	0	0	0	0	-1	\	0																		
1	2	2	2	2	2	1	О	0																		
1	2	2	2	2	2	1	0	0	0	0	0	0	0	0	0	0	0	-1	-2	-2	-2	-2	-2	-1	0	0
1	3	5	7	9	11	12	12	12	12	12	12	12	12	12	12	12	12	11	9	7	5	3	1	0	0	0

Интерполяция сигналов с использованием $A \Phi \ \mathrm{h}_a(x)$.

Впервые использовать преобразования Фурье АФ $h_a(x)$ для интерполяции сигналов было предложено В.Ф. Кравченко и В.А. Рвачёвым. Более подробно вопросы такой аппроксимации на примере простейшей АФ up(x) были рассмотрены Е.Г. Зелкиным и В.Ф. Кравченко. Для интерполяции функции f(x) в точках $2\pi n$, где n — целое, ими был предложен ряд следующего вида:

$$\tilde{f}(x) = \sum_{k=-\infty}^{\infty} f(2\pi k) \prod_{n=1}^{\infty} \text{sinc}[(x - 2\pi k)/2^n].$$
 (3)

Сходимость ряда доказана на примере преобразования Фурье АФ $h_a(x)$, которая при a=2 совпадает с АФ up(x).

Теорема 1 Ряд

$$\tilde{f}(x) = \sum_{k=-\infty}^{\infty} f(k\Delta) F_a \left[\frac{a\pi}{\Delta} (x - k\Delta) \right], \tag{4}$$

где $a>1,\ \Delta>0,$ сходится, если функция f(x) абсолютно интегрируема на всей числовой оси, т.е. $f(x)\in L_1[-\infty;\infty].$

Доказательство.

$$F_a\left[\frac{a\pi}{\Delta}(x-k\Delta)\right] = \int_{-\infty}^{\infty} h_a(z) \exp\left(iz\frac{a\pi}{\Delta}(x-k\Delta)\right) dz.$$

Тогда

$$\tilde{f}(x) = \sum_{k=-\infty}^{\infty} f(k\Delta) \int_{-\infty}^{\infty} \exp(ia\pi xz / \Delta) h_a(z) \exp(-ia\pi kz) dz.$$

Разложим функцию $\exp(ia\pi xz/\Delta)$ в ряд Тейлора по переменной z

$$\exp(ia\pi xz/\Delta) = \sum_{m=0}^{\infty} \frac{\left(ia\pi x/\Delta\right)^m}{m!} z^m.$$

Выражение для $\tilde{f}(x)$ принимает вид

$$\tilde{f}(x) = \sum_{k=-\infty}^{\infty} f(k\Delta) \sum_{m=0}^{\infty} \frac{\left(ia\pi x/\Delta\right)^m}{m!} \int_{-\infty}^{\infty} z^m h_a(z) \exp(-ia\pi kz) dz.$$

Обозначим $b_{k,m} = \int_{-\infty}^{\infty} z^m h_a(z) \exp(-ia\pi kz) dz$. Имеет место оценка

$$|b_{k,m}| \le |\xi|^m h_a(0) \int_{-1/(a-1)}^{1/(a-1)} |\exp(-ia\pi kz)| dz = \frac{2h_a(0)}{a-1} |\xi|^m = C |\xi|^m,$$

где $\xi \in [-(a-1)^{-1}, (a-1)^{-1}].$

$$|b_{k,m}| \le |\xi|^m h_a(0) \int_{-1/(a-1)}^{1/(a-1)} |\exp(-ia\pi kz)| dz = \frac{2h_a(0)}{a-1} |\xi|^m = C |\xi|^m,$$

где $\xi \in [-(a-1)^{-1}, (a-1)^{-1}].$

Отсюда

$$|\tilde{f}(x)| \leq \sum_{k=-\infty}^{\infty} |f(k\Delta)| \sum_{m=0}^{\infty} \frac{|ia\pi x|^m}{m!} |b_{k,m}| =$$

$$= C \sum_{m=0}^{\infty} \frac{|a\pi x|^m}{m!} |\xi|^m \sum_{k=-\infty}^{\infty} |f(k\Delta)|.$$

Поскольку ряд Тейлора функции e^x абсолютно сходится на всей числовой оси, то для того, чтобы ряд (4) сходился, необходима сходимость $\sum_{k=-\infty}^{\infty} |f(k\Delta)|$. Эта сходи-

мость будет иметь место при $f(x) \in L_1[-\infty,\infty]$. Теорема доказана.

Следовательно, ряд (4), состоящий из целых функций конечной степени, также представляет собой целую функцию конечной степени. Легко видеть, что в частном случае, при a=2, $\Delta=2\pi$ ряд (4) совпадает с рядом Е.Г. Зелкина—В.Ф. Кравченко (3). Ниже устанавливаются условия, при которых ряд (4) точно равен функции f(x) на всей числовой оси.

Теорема 2. Пусть непрерывная функция f(x) имеет финитный спектр $(\sup \hat{f}(p) = [-\Omega; \Omega])$. Тогда справедливо точное разложение

$$f(x) = \sum_{k=-\infty}^{\infty} f(k\Delta) F_a \left[\frac{a\pi}{\Delta} (x - k\Delta) \right], \tag{5}$$

где $F_a(x)$ определяется выражением (2) и выполняются условия

$$a > 2, \ \Delta \le \frac{\pi}{\Omega} \cdot \frac{a-2}{a-1},$$
 (6)

ИЛИ

$$\Delta < \frac{\pi}{\Omega}, \ a \ge \frac{2 - \Delta\Omega/\pi}{1 - \Delta\Omega/\pi}.$$
 (7)

Доказательство. Определим вспомогательную функцию

$$\varphi(x) \equiv f(x) \prod_{n=2}^{\infty} \operatorname{sinc}\left(\frac{\pi a}{\Delta a^n}(z-x)\right), \ z \in \mathbb{R}.$$

Эта функция имеет финитный спектр и $\operatorname{supp} \widehat{\varphi}(p) = [-\alpha; \alpha]$, где

$$\alpha = \Omega + \frac{\pi}{\Delta} \sum_{n=1}^{\infty} \frac{1}{a^n} = \pi \left(\frac{\Omega}{\pi} + \frac{1}{\Delta(a-1)} \right).$$

Чтобы $\varphi(x)$ могла быть разложена в ряд Котельникова, должно соблюдаться условие $\alpha \le \pi/\Delta$. Следовательно, необходимо выполнение неравенств (6), (7). В этом случае

$$\varphi(x) = \sum_{k=-\infty}^{\infty} \varphi(k\Delta) \operatorname{sinc} \left[\frac{\pi}{\Delta} (x - k\Delta) \right] =$$

$$= \sum_{k=-\infty}^{\infty} \left\{ f(k\Delta) \prod_{n=2}^{\infty} \operatorname{sinc} \left(\frac{\pi a}{\Delta a^n} (z - k\Delta) \right) \right\} \operatorname{sinc} \left[\frac{\pi}{\Delta} (x - k\Delta) \right].$$

Пусть x = z, тогда

$$\varphi(z) = f(z) = \sum_{k=-\infty}^{\infty} f(k\Delta) \prod_{n=1}^{\infty} \operatorname{sinc}\left(\frac{\pi a}{\Delta a^n} (z - k\Delta)\right).$$

Последнее выражение представляет собой требуемое разложение (5) с точностью до обозначения независимой переменной. Теорема доказана.

Следствие. В случае $f(x) \equiv 1$ получаем $\Omega = 0$ (supp $\widehat{f}(p) = \{0\}$), т.е. $\widehat{f}(p) = \delta(p)$, а для любых $\Delta > 0$, $a \ge 2$ имеет место разложение единицы

$$\sum_{k=-\infty}^{\infty} \prod_{n=1}^{\infty} \operatorname{sinc} \left[\frac{\pi}{\Delta a^{n-1}} (x - k\Delta) \right] = 1.$$
 (8)

Если f(x) не удовлетворяет условиям теоремы 2, то ряд (5) можно рассматривать как приближенное представление функции. При этом в точках $k\Delta$ аппроксимация будет точной.

Перед тем как перейти к рассмотрению применения нового способа интерполяции сигналов в задачах синтеза антенн, укажем на некоторые особенности его численной реализации. Во-первых, при практических вычислениях приходится ограничиваться конечным числом членов произведения в правой части (2)

$$F_a(p) = \prod_{k=1}^{M} \operatorname{sinc}(p / a^k). \tag{9}$$

Проведя рассуждения, аналогичные доказательству теоремы 2, можно убедиться, что и в этом случае будет иметь место точное разложение (5), а вместо условия (6) должны выполняться более слабые ограничения

$$a(1+a^{-M}) > 2, \ \Delta \le \frac{\pi}{\Omega} \cdot \frac{a(1+a^{-M})-2}{a-1}.$$
 (10)

Минимально возможные значения a для различного числа членов произведения M определяются из решения трансцендентного уравнения

$$a(1+a^{-M})-2=0.$$

Очевидно, что при M=1 как частный случай получается ряд Котельникова, а в пределе при $M \to \infty$ ряд (5).

Второй проблемой является необходимость ограничиться конечным числом членов ряда (5)

$$\tilde{f}_{N}(x) = \sum_{k=-N}^{N} f(k\Delta) F_{a} \left[\frac{a\pi}{\Delta} (x - k\Delta) \right].$$

Эффект усечения в данном случае не будет играть такой существенной роли, как при аппроксимации рядом Котельникова, поскольку уровень боковых лепестков у функций вида (2), (9) значительно ниже, чем у функции $\operatorname{sinc}(p)$.